3.6.5 \(\int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2} \, dx\) [505]

3.6.5.1 Optimal result
3.6.5.2 Mathematica [C] (warning: unable to verify)
3.6.5.3 Rubi [A] (verified)
3.6.5.4 Maple [B] (verified)
3.6.5.5 Fricas [C] (verification not implemented)
3.6.5.6 Sympy [F]
3.6.5.7 Maxima [F]
3.6.5.8 Giac [F]
3.6.5.9 Mupad [F(-1)]

3.6.5.1 Optimal result

Integrand size = 33, antiderivative size = 121 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2} \, dx=-\frac {A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {(2 A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {A \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

output
-A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1 
/2*c),2^(1/2))/a^2/d+1/3*(2*A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+ 
1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+A*sin(d*x+c)*cos(d*x+c) 
^(1/2)/a^2/d/(1+cos(d*x+c))-1/3*(A-B)*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*c 
os(d*x+c))^2
 
3.6.5.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.92 (sec) , antiderivative size = 800, normalized size of antiderivative = 6.61 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2} \, dx=-\frac {4 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (c+d x) (A+B \sec (c+d x)) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (B+A \cos (c+d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^2}-\frac {2 B \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (c+d x) (A+B \sec (c+d x)) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d (B+A \cos (c+d x)) \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^2}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (A+B \sec (c+d x)) \left (\frac {4 A \csc (c)}{d}+\frac {4 A \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-A \sin \left (\frac {d x}{2}\right )+B \sin \left (\frac {d x}{2}\right )\right )}{3 d}+\frac {2 (-A+B) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{\sqrt {\cos (c+d x)} (B+A \cos (c+d x)) (a+a \sec (c+d x))^2}+\frac {A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec (c+d x) (A+B \sec (c+d x)) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d (B+A \cos (c+d x)) (a+a \sec (c+d x))^2} \]

input
Integrate[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2) 
,x]
 
output
(-4*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d*x])*Sec 
[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + 
 Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Co 
t[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x]) 
^2) - (2*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/ 
4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d*x] 
)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqr 
t[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcT 
an[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + 
d*x])^2) + (Cos[c/2 + (d*x)/2]^4*(A + B*Sec[c + d*x])*((4*A*Csc[c])/d + (4 
*A*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/d + (2*Sec[c/2]*Sec[c/2 + (d* 
x)/2]^3*(-(A*Sin[(d*x)/2]) + B*Sin[(d*x)/2]))/(3*d) + (2*(-A + B)*Sec[c/2 
+ (d*x)/2]^2*Tan[c/2])/(3*d)))/(Sqrt[Cos[c + d*x]]*(B + A*Cos[c + d*x])*(a 
 + a*Sec[c + d*x])^2) + (A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*Sec[c + 
d*x]*(A + B*Sec[c + d*x])*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x 
 + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x 
+ ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x 
 + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + A 
rcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTa...
 
3.6.5.3 Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.08, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3042, 3433, 3042, 3456, 27, 3042, 3457, 25, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} (A \cos (c+d x)+B)}{(a \cos (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A \sin \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\int -\frac {a (A-B)-a (5 A+B) \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {a (A-B)-a (5 A+B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {a (A-B)-a (5 A+B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle -\frac {\frac {\int -\frac {a^2 (2 A+B)-3 a^2 A \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {6 A \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {-\frac {\int \frac {a^2 (2 A+B)-3 a^2 A \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {6 A \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {\int \frac {a^2 (2 A+B)-3 a^2 A \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {6 A \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {-\frac {a^2 (2 A+B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a^2 A \int \sqrt {\cos (c+d x)}dx}{a^2}-\frac {6 A \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {a^2 (2 A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a^2 A \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}-\frac {6 A \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {-\frac {a^2 (2 A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}-\frac {6 A \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {-\frac {\frac {2 a^2 (2 A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a^2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}-\frac {6 A \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

input
Int[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2),x]
 
output
-1/3*((A - B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^2) 
- (-(((-6*a^2*A*EllipticE[(c + d*x)/2, 2])/d + (2*a^2*(2*A + B)*EllipticF[ 
(c + d*x)/2, 2])/d)/a^2) - (6*A*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(1 + C 
os[c + d*x])))/(6*a^2)
 

3.6.5.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
3.6.5.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(349\) vs. \(2(165)=330\).

Time = 9.23 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.89

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (12 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-20 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+9 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A +B \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(350\)

input
int((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*A*cos(1/2 
*d*x+1/2*c)^6+4*A*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*co 
s(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*A*cos( 
1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^ 
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*B*cos(1/2*d*x+1/2*c)^3*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/ 
2*d*x+1/2*c),2^(1/2))-20*A*cos(1/2*d*x+1/2*c)^4+2*B*cos(1/2*d*x+1/2*c)^4+9 
*A*cos(1/2*d*x+1/2*c)^2-3*B*cos(1/2*d*x+1/2*c)^2-A+B)/a^2/cos(1/2*d*x+1/2* 
c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2* 
c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.6.5.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 314, normalized size of antiderivative = 2.60 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {2 \, {\left (3 \, A \cos \left (d x + c\right ) + 2 \, A + B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (-2 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (2 i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-2 i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (2 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-2 i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (2 i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (i \, \sqrt {2} A \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} A \cos \left (d x + c\right ) + i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (-i \, \sqrt {2} A \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} A \cos \left (d x + c\right ) - i \, \sqrt {2} A\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

input
integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorith 
m="fricas")
 
output
1/6*(2*(3*A*cos(d*x + c) + 2*A + B)*sqrt(cos(d*x + c))*sin(d*x + c) + (sqr 
t(2)*(-2*I*A - I*B)*cos(d*x + c)^2 - 2*sqrt(2)*(2*I*A + I*B)*cos(d*x + c) 
+ sqrt(2)*(-2*I*A - I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin( 
d*x + c)) + (sqrt(2)*(2*I*A + I*B)*cos(d*x + c)^2 - 2*sqrt(2)*(-2*I*A - I* 
B)*cos(d*x + c) + sqrt(2)*(2*I*A + I*B))*weierstrassPInverse(-4, 0, cos(d* 
x + c) - I*sin(d*x + c)) - 3*(I*sqrt(2)*A*cos(d*x + c)^2 + 2*I*sqrt(2)*A*c 
os(d*x + c) + I*sqrt(2)*A)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 
0, cos(d*x + c) + I*sin(d*x + c))) - 3*(-I*sqrt(2)*A*cos(d*x + c)^2 - 2*I* 
sqrt(2)*A*cos(d*x + c) - I*sqrt(2)*A)*weierstrassZeta(-4, 0, weierstrassPI 
nverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a 
^2*d*cos(d*x + c) + a^2*d)
 
3.6.5.6 Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A}{\sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )} + 2 \sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )} + 2 \sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx}{a^{2}} \]

input
integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))**2/cos(d*x+c)**(1/2),x)
 
output
(Integral(A/(sqrt(cos(c + d*x))*sec(c + d*x)**2 + 2*sqrt(cos(c + d*x))*sec 
(c + d*x) + sqrt(cos(c + d*x))), x) + Integral(B*sec(c + d*x)/(sqrt(cos(c 
+ d*x))*sec(c + d*x)**2 + 2*sqrt(cos(c + d*x))*sec(c + d*x) + sqrt(cos(c + 
 d*x))), x))/a**2
 
3.6.5.7 Maxima [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorith 
m="maxima")
 
output
integrate((B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^2*sqrt(cos(d*x + c))) 
, x)
 
3.6.5.8 Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorith 
m="giac")
 
output
integrate((B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^2*sqrt(cos(d*x + c))) 
, x)
 
3.6.5.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

input
int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^2),x)
 
output
int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^2), x)